a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính
Do đó: ΔABC vuông tại C(Định lí)
b) Xét ΔABC vuông tại C có
\(\sin\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)
hay \(\widehat{ABC}=30^0\)
Vậy: \(\widehat{ABC}=30^0\)
c)
Xét ΔOBC có OB=OC(=R)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
Xét ΔOBC cân tại O có OM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên OM là đường phân giác ứng với cạnh BC(Định lí tam giác cân)
⇒\(\widehat{BOM}=\widehat{COM}\)
hay \(\widehat{BON}=\widehat{CON}\)
Xét ΔBON và ΔCON có
OB=OC(=R)
\(\widehat{BON}=\widehat{CON}\)(cmt)
ON chung
Do đó: ΔBON=ΔCON(c-g-c)
⇒\(\widehat{OBN}=\widehat{OCN}\)(hai góc tương ứng)
mà \(\widehat{OBN}=90^0\)(NB⊥OB tại B)
nên \(\widehat{OCN}=90^0\)
hay NC⊥OC tại C
Xét (O) có
OC là bán kính
NC⊥OC tại C(cmt)
Do đó: NC là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)