Bài 1: chu nửa đường tròn O đường kính AB và điểm C trên nửa đường tròn.Kẻ CH vuông góc với AB. Gọi M,N lần lượt là điểm đối xứng với H qua AC và BC.
a, Chứng minh: M,C,N nằm trên tiếp tuyến của đường tròn tâm O
b, Chứng minh CH^2=AM*BN
Bài 2: Cho nửa đường tròn O đường kính AB tiếp tuyến Bx qua C trên nửa đường tròn kẻ tiếp tuyến thứ 2 cắt Bc tại M, tia AC cắt tia Ax tại N
a, chứng minh: OM vuông góc với BC
b, chứng minh: M là trung điểm của BN
c, kẻ CH vuông góc với AB, AM cắt CH tại I , chứng minh I là trung điểm của CH
Bài 3: Cho nửa đường tròn đường kính AB tiếp tuyến Ax, By qua M trên nửa đường tròn kẻ tiếp tuyến thứ 3 cắt Ax ,By lần lượt tại C,D. AD cắt BC tại N, MN cắt AB tại I .
a, chứng minh: CD=AC+BD
b, chứng minh:MN //AC
c, chứng minh: N là trung điểm của MI
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D nằm trên cạnh BC, vẽ đường thẳng song song với AM cắt AB, AC lần lượt tại E, F.
a. CMR: DE + DF = 2AM.
b. Đường thẳng qua A song song với BC cắt EF tại N. CMR: N là trung điểm của EF.
Cho tam giác ABC , đường trung tuyến AM.Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự ở E và F
a, Chứng minh rằng khi điểm D chuyển động trên cạnh BC thì tổng DE+DF có giá trị không đổi
b, Qua A vẽ đường thẳng song song với BC,cắt EF ở K.Chứng minh rằng K là trung điểm của EF
Cho tam giác ABC có AM là đường trung tuyến ( M thuộc BC ) , D là điểm nằm giữa B và M . Qua D kẻ đường thẳng d song song với AM , đường thẳng d cắt hai đường thẳng AB , AC thứ tự tại E và F . Kẻ AK song song với BC ( K thuộc DF )
1. Chứng minh hai tam giác KAE và MBA đồng dạng với nhau
2. Chứng minh K là trung điểm của EF
3. Gọi N là trung điểm của AK , O là giao điểm của DN và AB . Xác định vị trí của điểm D trên đoạn thẳng BM để OD : ND = 2 : 5 ?
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho hình thang ABCD(AB//CD), AB<CD. Gọi O là giao điểm 2 đường chéo, I là giao điểm 2 cạnh bên.
a)Đường thẳng OI cắt AB, CD lần lượt tại P,Q. CMinh P, Q là trung điểm của AB và CD
b)Qua O vẽ đường thẳng d//AB, d cắt AD và BC tại M,N. CMinh OM=ON
c)CMinh 1/AB+1/CD=1/OM
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
a) Cho tam giác ABC,đường trung tuyến AM.Qua trung điểm O của AM,vẽ đường thẳng cắt các cạnh AB,AC theo thứ tự ở B',C'.CMR khi đường thẳng thay đổi vị trí mà vẫn đi qua O thì tổng AB/AB'+AC/AC' không đổi.
b) Tổng quát hóa bài toán trên khi O là một điểm cố định trên AM