b) Ta có: \(A=5m\left(x^2y^3\right)^3=5mx^6y^9\)
\(B=\dfrac{-2}{m}x^6y^9\)
\(A-B=5mx^6y^9-\dfrac{-2}{m}x^6y^9\)
\(=\left(5m-\dfrac{-2}{m}\right)x^6y^9\)
\(=\dfrac{5m^2+2}{m}x^6y^9\)
c) Ta có: x6 \(\ge\) 0 \(\forall\) x \(\in\) R
\(\Rightarrow\) \(MIN_{x^6}\) = 0
\(\Rightarrow\) \(MIN_{\dfrac{5m^2+2}{m}x^6y^9}\) = 0
Vậy GTNN của hiệu A-B là 0.