Cho tam giác MNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.
a) Chứng minh tứ giác MDHE là hình chữ nhật.
b) Gọi A là trung điểm của HP. Chứng minh tam giác DEA vuông.
c) Tam giác MNP cần có thêm điều kiện gì để DE = 2EA.
Cho tam giác MNP vuông tại M, đường cao MH. Gọi D,E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.
a) Chứng minh tứ giác MDHE là hình chữ nhật
b) Gọi A là trung điểm của HP, chứng minh tam giác DEA vuông.
c) Tam giác MNP cần thêm điều kiện gì để DE=2EA.
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a/ Chứng minh tam giác AHB = tam giác BCD
b/ Tính độ dài đoạn thẳng AH c/ gọi M N P lần lượt là trung điểm của BC AH DH. tứ giác BMPN là hình gì? vì sao?
cho tam giác MNP vuông góc tại M đường cao MH gọi I là trung điểm MN trên tia đối của tia IH A, CMR tứ giác MPNH là hnc B, trên đoạn N lấy điểm T sao cho PT=NH CM MDNP là hbh
Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a) Chứng minh MN//AD
b) Gọi I là trung điểm của cạnh BC, chứng minh tứ giác BMNI là hình bình hành
c) Chứng minh tam giác ANI vuông tại N
(ko dùng đg trung bình)
cho tam giác ABC vuông tại A đường cao AH kẻ HD vuông góc với AB tại D kẻ HE vuông góc với AC tại E a chứng minh tứ giác ADHE là hình chữ nhật b chứng minh AH=DE? c tam giác ABC cần có điều kiện gì thì tứ giác ADHE là hình vuông
cho tam giác ABC vuông ở A và M là trung điểm của cạnh BC từ M kẻ MD vuông góc với AB tại D và ME vuông góc với AC tại E
a, cm tứ giá ADME là hình chữ nhật
b, gọi P là điểm đối xứng của D qua M , Q là điểm đối xứng của E qua M .Cm tứ giác DEPQ là hình thoi
c, cm BC =2DC
d, BQ cắt CP tại I .CM ba điểm A,M,E thẳng hàng
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF vuông góc với AB, AC lần lượt tại E và F. Gọi M, N, P lần lượt là trung điểm của BC, HB, HC. a) Chứng minh tứ giác AEHF là hình chữ nhật b) Chứng minh EN = 1 2 HB c) C/ minh tứ giác NEFP là hình thăng vuông, tính diện tích của nó biết AB = 6m, AC = 8cm d) Chứng minh AM // EN
Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng