a: Xét ΔHAD có HM/HA=HN/HD
nên MN//AD
b: Xét ΔHAD có MN//AD
nên MN/AD=HM/HA=1/2
=>MN=1/2AD=1/2BC
=>MN=BI
mà MN//BI
nên BMNI là hình bình hành
a: Xét ΔHAD có HM/HA=HN/HD
nên MN//AD
b: Xét ΔHAD có MN//AD
nên MN/AD=HM/HA=1/2
=>MN=1/2AD=1/2BC
=>MN=BI
mà MN//BI
nên BMNI là hình bình hành
Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a) Chứng minh MN//AD
b) Gọi I là trung điểm của cạnh BC, chứng minh tứ giác BMNI là hình bình hành
c) Chứng minh tam giác ANI vuông tại N
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a/ Chứng minh tam giác AHB = tam giác BCD
b/ Tính độ dài đoạn thẳng AH c/ gọi M N P lần lượt là trung điểm của BC AH DH. tứ giác BMPN là hình gì? vì sao?
cho tam giác ABC vuông tại A, D là trung điểm BC. từ D kẻ DE vuông góc AB(E thuộc AB), kẻ DF vuông góc AC(F thuộc AC)
a, chứng minh tứ giác AEDF là HCN
b, gọi I là điểm đối xứng với D qua F. chứng minh tứ giác ABDI là hình bình hành
c, kẻ AH vuông góc BC(H thuộc BC). chứng minh: AD2=EH2+HF2
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn Ah và Dh.
a) Chứng minh MN//Ad
b) Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành
c) Chứng minh tam giác AIN vuông tại N
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng