cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
CMR : \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}\right)^2\) = \(\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR: \(\dfrac{a.c}{b.d}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)CMR
\(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
Cho \(\dfrac{a}{c}=\dfrac{c}{b}.CMR:\)
a, \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
b, \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
cho \(\dfrac{a}{b}=\dfrac{b}{c}\) CMR: \(\dfrac{a^2+b^2}{b^2+c^2}\)
\(Cho\) \(\dfrac{a}{b}=\dfrac{c}{d}\). \(CMR:\) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Hãy chứng minh rằng :
\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\dfrac{a+2c}{b+2d}=\dfrac{a-2c}{b-2d}\)
\(\dfrac{a^2+2b^2}{c^2+2d^2}=\dfrac{a^2-2b^2}{c^2-2d^2}\)
\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)