Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Thay vào ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\left(1\right)\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\)
\(=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) suy ra: đpcm
Gia su \(\dfrac{a}{b}=\dfrac{c}{d}=k\)=> a=bk; c=dk
The vao ta co:
\(\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)<=>\(\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}\)<=>\(\dfrac{b^2}{d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)
=>\(\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)
ta có:\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{a-b}{a-b}.\dfrac{a-b}{c-d}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Vậy \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)