Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
chíp chíp

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\) ( với giả thiết các tỉ số đều có nghĩa )

Hải Đăng
24 tháng 9 2017 lúc 9:34

Ta có: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Chúc bạn học tốt!

Khải Vũ
24 tháng 9 2017 lúc 9:39

Từ giả thiết \(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

=> \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm). Tick đúng cho tui nhé


Các câu hỏi tương tự
dream XD
Xem chi tiết
chíp chíp
Xem chi tiết
Trần Thị Hương Lan
Xem chi tiết
Hà An Nguyễn Khắc
Xem chi tiết
Monkey D Luffy
Xem chi tiết
Phạm Thị Thanh Thanh
Xem chi tiết
Tuan Dang
Xem chi tiết
dream XD
Xem chi tiết
Ruby
Xem chi tiết