Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đậu Thị Khánh Huyền

Cho \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{x+z}=\dfrac{7z}{x+y}=\dfrac{133}{10}\)

Tính \(Q=\left(x+y+z\right)^2\)

Nguyễn Phạm Thanh Nga
17 tháng 8 2018 lúc 20:53

mình nghĩ bạn chép sai đề bài

dấu ''='' thứ 2 thay bằng dấu ''+''

ta có

\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)

\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)

lại có

\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)

\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)

\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)

\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)


Các câu hỏi tương tự
Diệu Linh
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
KaKa Ri
Xem chi tiết
Khong Biet
Xem chi tiết
Người €õi âM
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Hoàng Trần Trà My
Xem chi tiết
Nguyen Ngoc Anh Linh
Xem chi tiết