Chương I : Số hữu tỉ. Số thực

Đậu Thị Khánh Huyền

Cho \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{x+z}=\dfrac{7z}{x+y}=\dfrac{133}{10}\)

Tính \(Q=\left(x+y+z\right)^2\)

Nguyễn Phạm Thanh Nga
17 tháng 8 2018 lúc 20:53

mình nghĩ bạn chép sai đề bài

dấu ''='' thứ 2 thay bằng dấu ''+''

ta có

\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)

\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)

lại có

\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)

\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)

\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)

\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)

Bình luận (0)

Các câu hỏi tương tự
Diệu Linh
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
KaKa Ri
Xem chi tiết
Khong Biet
Xem chi tiết
Người €õi âM
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Hoàng Trần Trà My
Xem chi tiết
Nguyen Ngoc Anh Linh
Xem chi tiết