a) Xét ΔANM vuông tại A và ΔBMN vuông tại B có
MN chung
\(\widehat{ANM}=\widehat{BMN}\)(ΔEMN cân tại E)
Do đó: ΔANM=ΔBMN(Cạnh huyền-góc nhọn)
b) Xét ΔEMN có
MA là đường cao ứng với cạnh EN(gt)
NB là đường cao ứng với cạnh EM(gt)
MA cắt NB tại I(Gt)
Do đó: I là trực tâm của ΔEMN(Tính chất ba đường cao của tam giác)
Suy ra: EI\(\perp\)MN tại H
Xét ΔEMH vuông tại H và ΔENH vuông tại H có
EM=EN(ΔEMN cân tại E)
EH chung
Do đó: ΔEMH=ΔENH(Cạnh huyền-cạnh góc vuông)
Suy ra: MH=NH(Hai cạnh tương ứng)
mà M,H,N thẳng hàng(gt)
nên H là trung điểm của MN
hay EH là đường trung tuyến của ΔMNE(đpcm)