\(\dfrac{AB}{AC}=\dfrac{5}{12}\Rightarrow AB=\dfrac{5}{12}AC\)
Áp dụng định lý Pitago:
\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{5}{12}AC\right)^2+AC^2=26^2\)
\(\Rightarrow AC^2=576\Rightarrow AC=24\)
\(AB=\dfrac{5}{12}AC=10\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{50}{13}\left(cm\right)\)
\(CH=BC-BH=\dfrac{288}{13}\left(cm\right)\)
Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{HB}{HC}\)
nên \(\dfrac{HB}{HC}=\dfrac{25}{144}\)
\(\Leftrightarrow HB=\dfrac{25}{144}HC\)
Ta có: HB+HC=BC(H nằm giữa B và C)
\(\Leftrightarrow HC\cdot\dfrac{169}{144}=26\)
\(\Leftrightarrow HC=\dfrac{288}{13}\left(cm\right)\)
\(\Leftrightarrow HB=\dfrac{25}{144}\cdot\dfrac{288}{13}=\dfrac{50}{13}\left(cm\right)\)