a: \(AD\cdot DB+AE\cdot EC\)
\(=HD^2+HE^2\)
\(=DE^2=AH^2\)
b: \(DB\cdot BC\cdot CE\)
\(=\dfrac{HB^2}{AB}\cdot BC\cdot\dfrac{HC^2}{AC}\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot\dfrac{AB\cdot AC}{AH}=AH^3\)
a: \(AD\cdot DB+AE\cdot EC\)
\(=HD^2+HE^2\)
\(=DE^2=AH^2\)
b: \(DB\cdot BC\cdot CE\)
\(=\dfrac{HB^2}{AB}\cdot BC\cdot\dfrac{HC^2}{AC}\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot\dfrac{AB\cdot AC}{AH}=AH^3\)
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho ΔABC, góc A=900. Kẻ AH⊥BC tại H, HD⊥AB tại D, HE⊥AC tại E. CM:
a, CM: AD2 + AE2 = AD . AB
b, BD . AB + CE . AC + 2BH . HC = BC2
c, AH4 = AB . AC . BD . CE
Giúp mk vs ạ, rất cảm ơn người giúp.
Cho ΔABC vuông tại A, đường cao AH. Kẻ HE, HF lần lượt ⊥ AB và AC (E ∈ AB, F ∈ AC). CM:
a) \(\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\).
b) \(BC.BE.CF=AH^3\)
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
Cho \(\Delta ABC\) vuông tại A, biết BC = 10cm; \(\widehat{C}=40^o\)
a) Giải \(\Delta ABC\)
b) Vẽ đường cao AH. Kẻ HD \(\perp\) AB ; HE \(\perp\) AC. Chứng minh: \(AH^3=BD.BC.EC\)
Cho \(\Delta ABC\)\(\perp\) tại A, đường cao AH. Kẻ Hi\(\perp\)AB, HK\(\perp\)AC
a) Chứng minh AI.AB=AK.AC
b) Biết AH=2cm, BC=5cm. Tính SAIHK
c) Đường phân giác của góc AHB cắt AB tại E, biết \(\dfrac{EB}{AB}=\dfrac{2}{5}\). Tính tỉ số \(\dfrac{BI}{AI}\)
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.
Cho ΔABC vuông ở A, đường cao AH. Kẻ HF⊥AC, HE⊥AB
a, Tứ giác AEHF là hình gì?
b, C/m: - AE.AB = AF.AC
- BH.HC = 4EO.OF
Cho tam giác ABC vuông tại A, trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM và H là chân đường vuông góc kẻ từ D đến AC.
\Delta\text{ABM}ΔABM không đồng dạng với những tam giác nào dưới đây?
\Delta\text{HDM}ΔHDM
\Delta\text{HCD}ΔHCD
\Delta\text{DCM}ΔDCM
\Delta\text{CBD}ΔCBD
\Delta\text{ABC}ΔABC