a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
Suy ra: \(AD^2+AE^2=DE^2=AH^2=AD\cdot AB\)
b: \(BD\cdot AB+CE\cdot AC+2\cdot BH\cdot HC\)
\(=BH^2+CH^2+2\cdot BH\cdot CH\)
\(=\left(BH+CH\right)^2=BC^2\)
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
Suy ra: \(AD^2+AE^2=DE^2=AH^2=AD\cdot AB\)
b: \(BD\cdot AB+CE\cdot AC+2\cdot BH\cdot HC\)
\(=BH^2+CH^2+2\cdot BH\cdot CH\)
\(=\left(BH+CH\right)^2=BC^2\)
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC
b, AH^3= BD.CE.BC
Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N
a, CM : tam giác DMN cân
b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB
Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D
a, CM ; \(AB^2 / AD^2= HC /BC\)
b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)
c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD
Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM
a, CM; AM vuông góc AN
b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)
tam giác ABC vuông tại A đường cao AH . D,E lần lượt là hình chiếu của H trên AB và AC
CM
a)AB2/AC2=HB/HC
b)AB3/AC3=BD/CE
c)DE3=BC.BD.CE
NCho hình chữ nhật có AB=8 cm,BC=15cm. Kẻ AH vuông góc vs BD tại H
a,AC cắt BD tại Ở. Tính góc AOD
b,Kẻ HI vuông góc với AB tại T .cm:AI.IB=DH.HB
c, đường thẳng AH cắt BC tại M và cắt ĐC tại N . Cm :HA^2=HM.HN
Giúp mk vs mai mk kiểm tra rồi☹️☹️😘😘😘
Cho tam giác ABC vuông tại A,đường cao AH.Từ H kẻ HD vuông góc với AB,HE vuông góc với AC(D thuộc AB,E thuộc AC).Gọi M là trung điểm của BC và AB=15cm,BH=9cm
a.Tính AC,BC,AH
b.M là trung điểm của BC.Tính SAHM
c.Cm\(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
d.Cm BD.CE.BC=AH3
e.Giả sử trung tuyến AM và trung tuyến BN vuông góc với nhau tại G.Tính BN
f.Hạ \(MK\perp AB\left(K\in AB\right)\) và \(BG\perp AM\).Cm \(\dfrac{1}{BG^2}=\dfrac{1}{AB^2}+\dfrac{1}{4MK^2}\)
\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.
Cho △ABC vuông tại A, AH là đường cao.
a) Cho AB/AC=2/3, HC=12 cm. Tính AH.
b) Gọi M là trung điểm AC, vẽ MD ⊥ BC (D∈BC). C/m: AB2=BD2-CD2
c) Cho AB= 20cm, HC = 9cm. Tính SABC