Ta có: \(\Delta ABH\) vuông tại \(H\), \(\widehat{B}=45^0\)
\(\Rightarrow\).\(\Delta ABH\) vuông cân tại \(H\) \(\Rightarrow AH=BH=\dfrac{AB}{\sqrt{2}}=\dfrac{\sqrt{8}}{\sqrt{2}}=2\).
Lại có: \(AH^2+HC^2=AC^2\\ \Rightarrow CH=\sqrt{AC^2-AH^2}=\sqrt{13-4}=3\)
\(\Rightarrow BC=BH+HC=2+3=5\).
Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(gt)
nên ΔABH vuông cân tại H(Dấu hiệu nhận biết tam giác vuông cân)
\(\Leftrightarrow AH=BH\)(hai cạnh bên)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow2\cdot AH^2=\left(\sqrt{8}\right)^2=8\)
\(\Leftrightarrow AH^2=4\)
hay AH=2(cm)
Vậy: AH=2cm