Xét ΔABC có góc C>góc B
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
Xét ΔABC có góc C>góc B
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
CHO TAM GIÁC ABC VUÔNG TẠI A CÓ GÓC C=30 . KẺ AH VUÔNG GÓC BC. TRÊN ĐOẠN THẲNG HC LẤY D SAO CHO HD=HB. E LÀ CHÂN ĐƯỜNG VUÔNG GÓC KẺ TỪ C ĐẾN AD
. CHỨNG MINH
A, , AB=AD
B, TAM GIÁC ABD ĐỀU
C, SO SÁNH AH VÀ CE
D, BIẾT AB=5CM. TÍNH ĐỘ DÀI AH VÀ BC
Cho tam giác ABC vuông tại A và góc C = 30độ kẻ AH vuông góc BC. Trên đoạn thẳng HC lấy điểm D sao cho HD=HB. Góc E là chân
đường vuông góc. Kẻ đường C đến đoạn thẳng AD
a, CM AB=AD
b,CM ABD đều
c,So Sánh AH và CE
d, Biết AB= 5cm . Tính AH và BC
Cho tam giác AbC có góc A = 90°, AC>AB, đường cao AH. a) Biết AB=3cm,AC=4cm. Tính BC, AH b) Lấy điểm D thuộc HC sao cho HD=HB. Chứng minh tam giác ABD cân. c) Kẻ CE vuông góc với AD tại E. Chứng minh góc BAd = góc ACE d) Gọi giao điểm của AH và CE là I. Chứng minh ID_|_AC e) Chứng minh CB là phân giác của góc ACI f) Tính góc BIC
Cho tam giác ABC vuông tại A có BF là đường phân giác của góc B, H là hình chiếu của C trên BF. Trên tia đối của tia HB lấy điểm E sao cho HE = HF, K là hình chiếu của F trên BC. Chứng minh rằng:
a) CFE cân, AK//HC; b) So sánh FA và FC;
c) EBC vuông; d) các đường thẳng CH, FK và AB đồng quy.
Cho tam giác cân ABC (AB = AC), kẻ đường cao AH (H BC).
a. Chứng minh: HB = HC và góc BAH bằng góc CAH
b. Từ H kẻ (Dthuộc AB), kẻ HE vuông góc AC (E thuộcAC). C/m AD = AE và tam giác HDE cân.
c. Giả sử AB = 10 cm, BC = 16 cm. Tính độ dài AH.uov
Cho tam giác ABC vuông tại A góc B=60 độ,Vẽ AH vuông góc với BC,(H thuộc BC)
a,So sánh AB và AC;BC và HC
Cho tam giác tam giác ABC có 3 góc nhọn kẻ AH vuông góc BC(H thuộc BC).Biết HB<HC. CMR: góc HAB<góc HAC
Bài 4. (2,5 điểm) Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh ^ C lfy điểm E sao cho AH = AE Từ E kẻ đường thẳng vuông góc với AC, cắt BC tại D. a) Chimg minh Delta*AHD = Delta*AED b) So sinh DH và DC c) Gọi K là giao điểm của DE và AH. Chứng minh AD KC