Cho tam giác ABC vuông tại A biết AB = 9 cm AC bằng 12 cm Kẻ BD là tia phân giác của góc B( d thuộc AC) kẻ dh vuông góc với BC( H thuộc BC). Trên tia đối của tia ab lấy điểm K sao cho a k = HC a) Chứng minh tam giác ABD= tam giác HBD b) So sánh DA và DC c) Chứng minh ba điểm k,d,hthẳng hàng
Cho tam giác ABC có góc A = 90 độ. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh góc BAH = góc ACB.
b) Tia phân giác góc BAH và tia phân giác góc ACB cắt nhau tại I. Tính góc AIC
c) Cho AC > AB Trên cạnh AC lấy điểm M sao cho CM= AB. So sánh CM và BH.
Cho tam giác ABC vuông tại A và góc B bằng 60 độ phân giác góc B cắt cạnh AC tại D kẻ đường vuông góc để e đến BC E thuộc BC a chứng minh ba = be,da =de b chứng minh tam giác bdc là tam giác cân c so sánh độ dài de và bc
CHO TAM GIÁC ABC VUÔNG TẠI A CÓ GÓC C=30 . KẺ AH VUÔNG GÓC BC. TRÊN ĐOẠN THẲNG HC LẤY D SAO CHO HD=HB. E LÀ CHÂN ĐƯỜNG VUÔNG GÓC KẺ TỪ C ĐẾN AD
. CHỨNG MINH
A, , AB=AD
B, TAM GIÁC ABD ĐỀU
C, SO SÁNH AH VÀ CE
D, BIẾT AB=5CM. TÍNH ĐỘ DÀI AH VÀ BC
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
Cho ∆ABC vuông tại A có AB=9cm, AC=12cm A. Tính độ dài cạnh BC và so sánh các góc của ∆ABC B. Tia phân giác của góc ABC cắt AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD C. Gọi E là giao điểm của 2 đường thẳng HD và BA. Kéo dài BD cắt tại T. CM: BI vuông góc EC
Cho tam giác ABC cân tại A (góc A nhọn). Vẽ đường phân giác của góc BAC cắt BC tại H:
a) Chứng minh HB=HC VÀ AH vuông góc BC.
b) Với AB=30 cm, BC= 36 cm.Tính độ dài AH.
c) Vể đường trung tuyến BM của tam giác ABC cắt AH tại G.Tính độ dài AG và BM.
Cho tam giác ABC vuông tại A ( AB<AC) tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:
a) tam giác ABD= tam giác EBD và AD=ED
b) AH song song với BE