Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp đường tròn (O;R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E, F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm BC
a, Chứng minh tứ giác ABHF và BMFO nội tiếp
b, Chứng minh HE// BD
c, CHứng minh diện tích tam giác ABC = AB.AC. BC/4R
Cho nửa đường tròn tâm O đường kính BC=2R, A là một điểm bất kìa trên nửa đường tròn khác B và C. Kẻ AH vuống góc với BC, gọi E và F là chân đường vuông góc hạ từ H xuống AB và AC.
a) Cm AE.AB=AF.AC và EF^3=BE.CF.BC
b) Gọi I là điểm đối xứng của H qua AB. Cm IA là tiếp tuyến của nửa đường tròn.
c) Tìm vị trí của A để diện tích tam giác AHB lớn nhất.
Dạ em chỉ cần câu c thôi ạ, em cảm ơn ạ.
Cho \(\Delta ABC\) nhọn \(\left(AB< AC\right)\) nội tiếp đường tròn \(\left(O\right)\) . Gọi AD là đường kính của đường tròn, tiếp tuyến tại D của đường tròn cắt BC tại M. MO cắt AB,AC lần lượt tại E,F
a,CMR \(MD^2=MC.MB\)
b, Gọi H là trung điểm của BC. Qua B kẻ đường thẳng song song với MO. Đường thẳng này cắt AD tại P. CMR: đường tròn ngoại tiếp \(\Delta BHD\) đi qua P
c, CM : O là trung điểm của EF
Cho tam giác ABC nhọn (AB<AC) nội tiếp (O); AH là đường cao. Kẻ đường kính AD của (O).Từ B kẻ BE vuông góc với AD tại E từ C kẻ CF vuông góc với AD tại F.
a, C/m tứ giác ABHE nội tiếp
b, C/m HE//CD
c, Gọi I là trung điểm của BC
C/m IE=IF
Cho tam giác ABC nhọn ( AB < AC). Vẽ đường tròn tâm O đường kính AB cắt các cạnh BC,AC lần lượt tại D,E. Gọi H là giao điểm của AD và BE.
a) Cm CEHD nt
b) Từ C vẽ đường thằng song song với AD cắt đường thẳng BE tại M, từ C vẽ tiếp đường thẳng song song với BE cắt đường thẳng AD tại N. Cm \(\Delta HNC\sim\Delta BAC\)
c) Đường thẳng CH cắt AB tại F. Cm \(OC\perp MN\)
* giúp mình câu b,c *
Cho tam giác ABC có 3 góc nhọn (\(\widehat{ABC}>\widehat{ACB}\)) và nội tiếp đường tròn (O). Kẻ đường kính AK của (O). Gọi E,F lần lượt là hình chiếu vuông góc của B và C trên đường thẳng AK. Kẻ đường cao AD của \(\Delta ABC\).
a, Cm: 4 điểm A,C,F,D cùng thuộc một đường tròn và DF ⊥ AB
b, Cho 2 điểm B, C cố định và A di động tên cung lớn BC của đường tròn (O) (A≠B; A≠C) sao cho ΔABC có 3 gốc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Chứng mình đường trung trực của đoạn thẳng DE luôn đi qua một điểm cố định.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF