Cho ΔABC, đường cao AH (H nằm giữa B và C). AH = 12cm, HB=9cm, BC = 25cm.
a) CM: ΔABC vuông tại A.
b) Kẻ Bx// AC cắt AH ở D.Tính HD và chứng minh: AB2 = AC.BD.
c) Kẻ DE⊥AC (E ϵ AC), DE cắt BC ở F. CM: BH2 = HF.HC
Cho ΔABC vuông tại A, đường cao AH, biết BH = 1,6cm, CH=2,5cm. Kẻ HE⊥AB (E ϵ AB), HF⊥AC (F ϵ AC)
a) Chứng minh ΔAFE ~ ΔABC, Tính diện tích ΔAEF
b) Đường thẳng đi qua A vuông góc với EF tại K cắt BC ở I. Chứng minh I là trung điểm của BC
(Các bạn giúp mình với ạ, mình cảm ơn ^^)
Cho △ABC nhọn, các đường cao AD, BI, CK cắt nhau tại H. DE⊥AB tại E, DF⊥AC tại F.
a. Chứng minh AE*AB=AF*AC.
b. Cho HD=AD/3. Tính tanB*tanC
1.
\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\). E, F thứ tự là hình chiếu của H trên AB, AC. Đặt BC= 2a( a >0). Chứng minh
a. \(BE^2=\dfrac{BH^3}{BC};CF^2=\dfrac{CH^3}{BC}\)
B. tính giá trị của \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\) theo a
2.
\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\), đường cao BK. Chứng minh: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
3.
\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\). Chứng minh: \(BC^2=2AH^2+BH^3+CH^3\)
Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm và đường cao AH
a) Tính độ dài AH
b) Kẻ HD⊥AB; HE⊥AC. Chứng minh AD.AB= AE.AC
c) Gọi M lần lượt là trung điểm của AC và HC. Chứng minh hệ thức HB.HC=4MN2
Cho \(\Delta\)ABC vuông tại A có AB = 5 và AC = 4
a) Giải \(\Delta\)ABC .
b) Kẻ đường cao AH của \(\Delta\)ABC . chứng minh : BC là tiếp tuyến của ( A ; AH ).
c) từ H kẻ HE \(\perp\)AC cắt ( A ) tại K . Chứng minh BI là tiếp tuyến của (A).
Chứng minh : BI là tiếp tuyến của (A).
d) Chứng minh : 3 điểm I , A , K thẳng hàng .
Bài 1
Cho \(\tan\alpha+\cot\alpha=2\). Tính A= \(\tan^2\alpha+\cot^2\alpha\)
Bài 2
Cho \(\Delta ABC,\widehat{B}=30^0,\widehat{C}=45^0\), AB=8cm. Tính AC(làm tròn đến chữ số thập phân thứ nhất)
Bài 3
Cho \(\Delta ABC\), đường cao AH(\(H\in BC\)). Từ H kẻ \(HM\perp AB\left(M\in AB\right)\); \(HN\perp AC\left(N\in AC\right)\). Chứng minh: AM.AB = AN.AC
Bài 1: cho Δ nhọn ABC. Kẻ AH⊥BC, HM⊥AB và kẻ HN⊥AC. Chứng minh:
a, AB.AM=AC.AN
b, Tứ giác BMNC có các góc đối bù nhau.
Bài 2: Cho Δ ABC vuông tại A, đường cao AH. Gọi P và Q lần lượt là hình chiếu của H trên AB và AC.
a. Tứ giác APHQ là hình gì ? Hãy chứng minh.
b. Tính PQ nếu biết: HB= 4 (cm) và HC= 9 (cm).
Cho tam giác ABC có A = 90 độ , kẻ đường cao AH và trung tuyến AM kẻ HDvuông góc AB , HE vuông góc AC
biết HB = 4,5cm; HC=8cm.
a) Chứng minh BAH = MAC
b) Chứng minh AM vuông góc DE tại K
c) Tính độ dài AK