a: Xét tứ giácBC'B'C có
góc BC'C=góc BB'C=90 độ
nên BC'B'C là tứ giác nội tiếp
=>góc AB'C'=góc ABC
=>ΔABC đồng dạng với ΔAB'C'
b:\(S=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^0=2\cdot8\cdot\dfrac{1}{2}=8\left(cm^2\right)\)
a: Xét tứ giácBC'B'C có
góc BC'C=góc BB'C=90 độ
nên BC'B'C là tứ giác nội tiếp
=>góc AB'C'=góc ABC
=>ΔABC đồng dạng với ΔAB'C'
b:\(S=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^0=2\cdot8\cdot\dfrac{1}{2}=8\left(cm^2\right)\)
Cho \(\Delta\)ABC vuông tại A, đường cao AH. Biết BH = 9cm, BC = 25cm. Kẻ AK là phân giác \(\widehat{CAH}\) .
a, \(\Delta\) HBA \(\sim\) \(\Delta\) ABC
b, Tính AB, CK, HK
c, Trên AC lấy E sao cho CE= 5cm , trên BC lấy F sao cho CF = 4cm. Chứng minh: CEF vuông
Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD ⊥ AB ( D ∈ AB ). HE ⊥ AC ( E ∈ AC ). AB = 12cm, AC = 16 cm
a) Chứng minh : ΔHAC ∼ ΔABC
b) Chứng minh : AH2 = AD.AB
c) Chứng minh : AD.AB = AE.AC.
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}\)
ΔABC (AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H
a)CM: ΔAFH ∼ ΔADB b)CM: BH.HE=CH.HF
c)CM: ΔAEF ∼ ΔABC
d)Gọi I là trung điểm của BC,qua H kẻ đường thẳng vuông góc với HI,đường thẳng này cắt AB tại M và AC tại N.CM: MH=HN
(ko cần vẽ hình và làm câu in đậm thôi nha)
ΔABC (AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H
a)CM: ΔAFH ∼ ΔADB b)CM: BH.HE=CH.HF
c)CM: ΔAEF ∼ ΔABC
d)Gọi I là trung điểm của BC,qua H kẻ đường thẳng vuông góc với HI,đường thẳng này cắt AB tại M và AC tại N.CM: MH=HN
(ko cần vẽ hình và làm câu in đậm thôi nha)
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho ΔABC có 3 góc nhọn (AB < AC). Gọi BD là đường phân giác trong của ΔABC, dựng đường trung trực của đường thẳng BD cắt đường thẳng AC tại M.
a) Cm: ΔMAB đồng dạng ΔMBC.
b) Cho AD = 4cm, DC = 6cm. Tính MD.
Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a/ C/m ΔAEF và ΔABC đồng dạng.
b/ Gọi I là giao điểm của AD và EF. C/m IH.AD = AI.HD.
c/ Cho AB = 10cm; AC = 17cm; BC = 21cm. Tính \(S_{\text{Δ}ABC}\).
Cho ΔABC vuông tại A, đường cao AH. Từ H kẽ HM ⊥ AC tại M.
1) Chứng minh ΔAHM ∼ ΔACH.
2) Gọi I là trung điểm đoạn thẳng HM. Đường thẳng CI cắt AH và AB lần lượt tại E, K
a) Chứng minh \(\frac{AK}{AB}=\frac{1}{2}\)
b) Chứng minh \(S_{AKE}=\frac{1}{2}\left(S_{ABM}-S_{AME}\right)\)
1.Cho \(\Delta ABC,A>90^o.AB=2cm,AC=4cm\) . Đường thẳng đi qua điểm B cắt AC tại D, sao cho góc \(ABD\) = góc \(ACB\) . Gọi AH là đường cao \(\Delta ABC,AE\) là đường cao \(\Delta ABD\)
a, Chứng minh: \(\Delta ABD\sim\Delta ACB\)
b, Tính \(AD\) và \(DC\)