a)Xét tam giác HAC và tam giác ABC có :
Góc AHC = góc BAC ( = 90o)
Góc BCA chung
⇒ Tam giác HAC ~ Tam giác ABC ( TH3 )
b) Xét tam giác AHD và tam giác ABH có :
Góc HAB chung
Góc ADH = Góc AHB ( = 90o)
⇒ Tam giác AHD ~ Tam giác ABH ( TH3)
⇒ \(\dfrac{AH}{AB}=\dfrac{AD}{AH}\)
⇒ AH2 = AB.AD
c) Xét tam giác AEH và tam giác AHC có :
Góc HAC chung
Góc AEH = góc AHC ( = 90o)
⇒ Tam giác AEH ~ Tam giác AHC ( TH3)
⇒ \(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)
⇒ AH2 = AE.AC
Mà : AH2 = AD.AB ( Câu b)
⇒ AE.AC = AD.AB
d) Do : AE.AC = AD.AB ( Câu c)
⇒ \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
Xét tam giác AED và tam giác ACB có :
Góc BAC chung
\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\) ( cmt)
⇒Tam giác AED ~ Tam giác ACB ( TH2)
⇒ \(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2\)
P/S : Hình như thiếu dữ kiện , chưa cho AH nên ko ra số cụ thể
â)xét tam giác hac và tam giác abc có:
góc c chung
góc ahc= góc bac=90 độ
suy ra tam giác hac đồng dạng với tam giác abc(g.g)
b)xét tam giác ahb và tam giác adh có
góc ahb= góc adh=90 độ
góc a chung
suy ra tam giác ahb đồng dạng với tam giác adh(g.g)
ta có:ah^2=ab.ad
phùng khánh linh mik bt tinh ah nè
xét tam giác abc vuông tại a ta co bc^2=ab^2+ac^2(dinh ly py ta go)
bc=20cm
Sabc=1/2 ab.ac
Sabc=1/2 ah.bc
suy ra ah=ab.ac/bc
ah=9,6cm