Cho tam giác ABC đường cao AH. Trên nửa mặt phẳng chứa A bờ là đường thẳng BC lấy các điểm D và E sao cho BD vuông góc vs BA, BD=BA, CE vuông góc CA, CE=CA.
Chứng minh rằng: các đường thẳng AH, BE, CD cùng đi qua 1 điểm
B1:cho tam giác ABC, A= 90 đọ. AB= AC, qua A kẻ đường thẳng xy. Vẽ BD vuông góc xy. Tại D, CE vuông góc với xy tại E.CMR:
a) tam giác ABD= tam giác ACE
b) DE= BD+ CE
B2:Cho tam giác ABC có góc A= 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ AD vuông góc với AB và AD= AB. Trên nửa mặt phẳng bờ AC có chứa điểm B. Vẽ AE vuông góc với AC. Kẻ AH vuông góc với ED tại H. CMR: đường thẳng AH đi qua chung điểm cạnh BC.
Cho tg ABC vuông tại A có đường cao AH. Trên nửa mặt phẳng có bờ BC chứa điểm A, kẻ tia Cx vuông góc với AC tại C. Tia phân giác của góc ABC cắt AC ở D, và cắt tia Cx tại E.
a.So sánh CE và AB
b.So sánh AD và DC
c.Trên nửa mặt phẳng có vờ BC chưa điểm A lấy điểm K sao cho KB=KC. Chứng minh rằng BK,KH và Ah là độ dài 3 cạnh của 1 tg vuông
Mong mọi người giúp mình với!
Cho tam giác ABC vuông cân tại A.Qua A vẽ đường thẳng d sao cho B và C cùng thuộc 1 nửa mặt phẳng bờ D. về BD và CE cùng vuông góc với D (D thuộc d) (E thuộc d).Chứng minh:
a) DE=DB+CE
b) Gọi M là trung điểm của BC.Chứng minh: góc DME vuông cân tại A.
Cho tam giác nhọn ABC, vẽ BD \(\perp\) AC tại D và CE \(\perp\) AB tại E. Các đường thẳng BD và CE cắt nhau tại H. Gọi điểm M là trung điểm của cạnh CB. Trên tia đối của tia MH lấy điểm K sao cho MH=MK.
a) CMR: \(\Delta BMH=\Delta CMK\)
b) CMR: \(CK\perp AC\)
c) Vẽ \(HI\perp BC\) tại I, trên tia HI lấy điểm G sao cho HI=HG. CMR: GC=BK
Cho tam giác ABC vuông tại A,AB >AC. Trên BA lấy điểm D sao cho BD = AC. Trên AC lấy E sao cho CE=AD. Trên đường thẳng vuông góc với AB vẽ tại B lấy điểm F sao cho BF=CE.E,C nằm cùng nửa mặt phẳng bờ AB
a,Chứng minh:tam giác BDF= tam giác ACD
b,Chứng minh:tam giác CDF là tam giác vuông cân
giúp mik vs huhu!!!
1.Cho ΔABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC). Chứng minh rằng:
a. HB = HC.
b. ^ BAH = ^ CAH
2.Cho ΔABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A.
3. Cho ΔABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH⊥AB (H ∈ AB), MK⊥AC (K ∈ AC). Chứng minh rằng:
a. MH = MK
b. Bˆ = Cˆ
4.Hai đoạn thẳng AB và CD vuông góc với nhau tại trung điểm của mỗi đoạn. Chứng minh rằng : AC/ /BD và AC = BD.
5.Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH ⊥ AD (H ∈ AD), kẻ CK ⊥ AE (K ∈ AE). Chứng minh rằng: BH = CK.
6.Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH ⊥ AB (H ∈ AB), kẻ IK ⊥ AC (K ∈ AC). Chứng minh rằng : BH = CK.
7.Cho ΔABC vuông ở A. Từ A kẻ AH ⊥ BC (H ∈ BC). Trên cạnh BC lấy điểm E sao cho BE = BA. Kẻ EK ⊥ AC (K ∈ AC).
Chứng minh AK = AH.
HELP ME!!
Tam gIác ABC nhọn. Trên nửa mặt phẳng bờ AB không chứa C vẽ Ax vuông góc AB rồi lấy trên đó điểm E sao cho AE=AB. Trên nửa mặt phẳng bờ AC không chưa B vẽ tia Ay vuông góc AC rồi lấy trên đó điểm D sao cho AD=AC. CMR: BD=CE và BD vuông góc CE AB và DE có vuông góc không ?Vì sao?
cho \(\Delta ABC,\) đường cao \(AH\perp BC\). trên nửa mặt phẳng bờ AC ko chứa điểm B. vẽ \(\Delta ACD\) sao cho AD=BC và CD=AB. CMR: AB//CB và \(AH\perp AD\)