Cho \(\Delta ABC\) cân tại A ( góc A tù ) . Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD = CE . Trên tia đối của tia CA lấy I sao cho CA = CI
Câu 1 : chứng minh :
a) \(\Delta ABC=\Delta ICE\)
b) AB + AC < AD + AE
Câu 2 : từ D và E kẻ các đường thẳng cùng vuôn góc với BC cắt AB , AI lần lượt tại M , N . Chứng minh BM = CN
Câu 3 : Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN
Mọi ng giúp minh câu 1 b với câu 3 thôi ạ . Cám ơn trước
Cho ΔABC cân tại A, M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a, CMR: AM ⊥ BC
b, CMR: AM là tia phân giác của \(\widehat{DAE}\)
c, Kẻ BK ⊥ AD (K∈AD). Trên tia đối của tia BK lấy H sao cho BH=AE. Trên tia đối của tia AM lấy N sao cho AN=CE. CMR: \(\widehat{MAD}=\widehat{MBH}\)
Cho tam giác ABC cân tại A, có A= 80 độ . Trên tia đối của tia BC lấy E . Trên tia đối của tia BC lấy D sao cho BD = CE. a) Tính số đo góc B, góc C ? b) Chứng minh : DBA=ACE c) Chứng minh ∆ABD = ∆ ACE . d) Tam giác ADE là tam giác gì ? Vì sao ?
Cho tam giác ABC đều. Trên tia đối của tia BC lấy điểm D. Trên tia đối của tia CB lấy điểm E sao cho BD = CE = BC
a, Chứng minh tam giác ADE cân
b, Tính góc DAE
c, Kẻ BH vuông góc AD, CK vuông góc AE. Chứng minh BH = CK; AH = AK
d, Chứng minh HK song song BC
e, Đường thẳng HB cắt KC tại F. Chứng minh tam giác HKF đều
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho ΔABC cân tại A. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh ΔAMD = ΔCMB, từ đó chứng minh AD // BC
b) Chứng minh ΔACD cân
c) Trên tia đối của tia CA lấy điểm E sao cho CE = CA. Chứng minh D đi qua trung điểm của BE.
cho Δ ABC cân tại A và M là trung điểm BC. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD = CE.
a) CMR AM vuông góc BC
b) CMR AM là tia p/g góc DAE
c) Kẻ BK vuông góc AD. Trên tia đối tia BK lấy H sao cho BH = AE. Trên tia đối tia AM lấy N sao cho AN=CE. CMR góc MAD = góc MBH
Cho \(\Delta ABC \) cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. C/m:
a) HB=CK
b) \(\widehat{AHB}=\widehat{AKC}\)
c) HK//DE
d) \(\Delta AHE=\Delta AKD\)