53.Cho tam giác ABC cân tại A.Gọi O là trung điểm BC.Vẽ OH,OK lần lượt vuông góc với AB,AC(Hϵ AB,Kϵ AC).
a)C/m AH,AK là các tiếp tuyến của đường tròn (O;OH).
b)Gọi I là 1 điểm trên cung nhỏ HK của đường tròn (O).Vẽ tiếp tuyến đường tròn (O) tại I cắt AB,AC lần lượt tại M,N.C/m chu vi tam giác AMN=AH+AK.
c)C/m góc MON=góc B=góc C.
d)C/m các tam giác BMO,OMN,CON đồng dạng vs nhau.
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại P và Q. Gọi D là điểm đối xứng của M qua đường thẳng PQ.
Chứng minh: D nằm trên đường tròn (O).
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
Giúp mình giải bài này:
Cho \(\Delta ABC\) nhọn nội tiếp (O; R) AB<AC. Các đường cao BE, CF cắt nhau tại H.
a) Gọi I tâm đường tròn nội tiếp \(\Delta ABC\). Gọi D là giao điểm của của tia AI với (O). Chứng minh \(\Delta BDI\) cân
b) Gọi M, N lần lượt là tiếp điểm của (I) với AB, BC. Kẻ CQ vuông góc với AD tại Q. Chứng minh M, N, Q thẳng hàng.
Từ A nằm ngoài (O;R) vẽ 2 tiếp tuyến AE , AF đến (O;R). Đường thẳng đi qua O vuông góc với OA cắt các tia AE, AF lần lượt tại B,C . Gọi D là điểm trên cung nhỏ EF của (O;R). Tiếp tuyến tại D của (O;R) cắt AB, AC lần lượt tại M,N
a) C/m tứ giác AEOF nội tiếp
b) Gọi DE cắt MO tại I, DF cắt No tại K . Chứng minh OI.OM=ON.Ok
c) C/m \(\Delta OMN\sim\Delta BMO\)
d) Khi D thay đổi trên cung nhỏ EF của (O;R) , tìm GTLN của \(S_{\Delta AMN}\)
Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
Cho đường tròn (O) với dây AB cố định khác đường kính. C là một điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. Gọi M, N lần lượt là điểm chính giữa cung nhỏ AB và cung nhỏ AC. Gọi I là giao điểm của BN và CM.Dây MN cắt AB, AC lần lượt tại H và K. CM: tam giác AKI cân tại K và tứ giác AHIK là hình thoi
cho tam giác ABC nội tiếp đường tròn (O) , BD và CE lần lượt là các tia phân giác xủa góc ABC , ACB ( D , E thuộc (O) ) cắt nhau tại I . DE cắt AB , AC tại M, N . Chứng minh Tam giác AMN cân và tam giác AID cân
( vẽ hình giúp em với ạ )