Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
Cho \(K=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}-x.\) Tìm min (max) của K.
Tìm min : E = \(3x^2-4xy+2y^2-3x+2012\)
C = \(\dfrac{x^2-x+2012}{\left(x-2\right)^2}\)
D = \(\dfrac{4x+3}{x^2+1}\)
A = \(x+1+\dfrac{1}{x-1}\) biết rằng x > 1
Cho \(K=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}-x\)
Tìm Min, Max của K
a) Tìm min \(P=2x^2-8x+1\)
b) Tìm max \(Q=-5x^2-4x+1\)
c) Tìm min \(K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
d) Tìm min \(R=\dfrac{3x^2-8x+6}{x^2-2x+1}\)
Bài 4:
Cho D = \(\dfrac{2}{x}\)- \((\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy})\): \(\dfrac{x^2-xy+y^2}{x-y}\)
a) Rút gọn D
b) Tính D với |2x - 1| = 1 ; |y + 1| =\(\dfrac{1}{2}\)
Bài 5:
Cho E = \((\dfrac{2x}{x+3}+\dfrac{x}{x-3}-\dfrac{3x^2+3}{x^2-9})\): \((\dfrac{2x-2}{x-3}-1)\)
a) Rút gọn E
b) Tìm x để E < \(\dfrac{1}{2}\)
c) Tìm GTNN của E (x + 3) (1 - x - x2)
a) \(Q=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}-x\)
Tìm Max ( Min nếu có ) của Q
b) Tìm Min \(K=a^4-2a^3+3a^2-4a+5\)
cho 3 số dương x,y,z thỏa mãn x2+y2+z2 \(\le\) 3. Tìm min của P = \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Cho P = \(\dfrac{x^2}{x-1}\) .
Tìm P min khi x > 1