Phương trình đặc trưng\(x^2-18x+17=0\) có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=17\end{matrix}\right.\)
Do đó SHTQ của dãy có dạng: \(u_{n+1}=c_1.1^{n+1}+c_2.17^{n+1}\)
Lần lượt thay n=0; n=1 vô phương trình, ta được hệ:
\(\left\{{}\begin{matrix}c_1+17c_2=16\\c_1+289c_2=288\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c_1=-1\\c_2=1\end{matrix}\right.\)
\(\Rightarrow u_{n+1}=17^{n+1}-1\)
\(\Rightarrow u_n=17^n-1\)
\(\Rightarrow\dfrac{17^n-1}{2^{2020}}=1\)
Thôi, đến đây là chịu rồi :D Miss dạng chia có mũ rồi :((