a) Đặt \(v_n=u_n+\dfrac{1}{2}\). Khi đó \(v_1=3+\dfrac{1}{2}=\dfrac{7}{2}\).
Ta có \(v_n-\dfrac{1}{2}=5\left(v_{n-1}-\dfrac{1}{2}\right)+2\Leftrightarrow v_n=5v_{n-1}\).
Áp dụng liên tiếp n - 1 lần ta được: \(v_n=5v_{n-1}=5^2v_{n-2}=...=5^{n-1}v_1=\dfrac{5^{n-1}.7}{2}\).
Từ đó \(u_n=\dfrac{5^{n-1}.7-1}{2}\).
Suy ra \(u_7=\dfrac{5^6.7-1}{2}=54687\).
b) Ta có \(v_n=273437\Leftrightarrow\dfrac{5^{n-1}.7-1}{2}=273437\Leftrightarrow n=8\).
Vậy 273437 là số hạng thứ 8 của dãy.