Bài 2: Dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kimian Hajan Ruventaren

Cho dãy an xác định bởi công thức

\(\left\{{}\begin{matrix}a_1=6,a_2=0\\n.a_{n+2}=\left(2n+1\right)a_{n+1}-\left(n+1\right)a_n+3n^2+3n\end{matrix}\right.\) n= 1,2,3..

Tìm SHTQ

Nguyễn Việt Lâm
20 tháng 3 2022 lúc 9:50

\(\Leftrightarrow n\left(a_{n+2}-a_{n+1}\right)=\left(n+1\right)\left(a_{n+1}-a_n\right)+3n\left(n+1\right)\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=\dfrac{a_{n+1}-a_n}{n}+3\)

Đặt \(\dfrac{a_{n+1}-a_n}{n}=b_n\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=-6\\b_{n+1}=b_n+3\end{matrix}\right.\)

\(\Rightarrow b_n\) là cấp số cộng với công sai 3

\(\Rightarrow b_n=b_1+\left(n-1\right)d=-6+3\left(n-1\right)=3n-9\)

\(\Rightarrow a_{n+1}-a_n=n\left(3n-9\right)=3n^2-9n\)

\(\Rightarrow a_{n+1}-\left(n+1\right)^3+6\left(n+1\right)^2-5\left(n+1\right)=a_n-n^3+6n^2-5n\)

Đặt \(a_n-n^3+6n^2-5n=c_n\Rightarrow\left\{{}\begin{matrix}c_1=6-1+6-5=6\\c_{n+1}=c_n=...=c_1=6\end{matrix}\right.\)

\(\Rightarrow a_n=n^3-6n^2+5n+6\)


Các câu hỏi tương tự
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tâm Cao
Xem chi tiết
Mai Anh
Xem chi tiết
Tâm Cao
Xem chi tiết
Thanh Hằng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Tâm Cao
Xem chi tiết