Bài 2: Dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho dãy số \(\left(u_n\right)\) xác định bởi :

              \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=u_n+3n-2,\left(n\ge1\right)\end{matrix}\right.\)

a) Tìm công thức tính \(u_n\) theo \(n\)

b) Chứng minh \(\left(u_n\right)\) là dãy số tăng

Bùi Thị Vân
24 tháng 5 2017 lúc 9:53

a)
\(u_1=5\)
\(u_2-u_1=1\)
\(u_3-u_2=4\)
............
\(u_n-u_{n-1}=3\left(n-1\right)-2=3n-5\)
Cộng từng vế của đẳng thức và rút gọn ta được:
\(u_n=5+1+4+7+...+3n-5\)
\(=5+\dfrac{\left(3n-5+1\right)\left(n-1\right)}{2}=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\).
Vậy \(u_n=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\) với \(n\ge1\).
Xét hiệu:
\(u_1=5\)
\(u_n-u_{n-1}=3n-5\) \(\left(n\ge2\right)\)
Với \(n\ge2\) thì \(3n-5>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.


Các câu hỏi tương tự
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Tâm Cao
Xem chi tiết
Tâm Cao
Xem chi tiết
Tâm Cao
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thanh Hằng
Xem chi tiết
Đào Mai Anh
Xem chi tiết
Jelly303
Xem chi tiết