a.Xét \(\Delta ADB=\Delta HDB\)(cạnh huyền-góc nhọn)
\(\Rightarrow\) AD=HD (2 cạnh tương ứng)
a.Xét \(\Delta ADB=\Delta HDB\)(cạnh huyền-góc nhọn)
\(\Rightarrow\) AD=HD (2 cạnh tương ứng)
cho tam giác ABC vuông tại A, AB<AC. Kẻ phân giác BD của góc ABC kẻ DM vuông góc với BC
a) chứng minh tam giác DAB= tam giác DMB
b) chứng minh AD<DC
c) Gọi K là giao điểm của DM và AB, BD cắt KC tại N. Chúng minh BN vuông góc với KC và tam giác KDC cân
giúp mình với
Cho ΔABC cân tại A có phân giác BD của góc B. DH ⊥ BC. Gọi K là giao điểm BA và HD. C/m
a, BD ⊥ KC
b, ∠DKC = ∠DCK
c, 2(AD + AK) > KC
Bài 4 : Cho tam giác ABC vuông tại A, Phân giác BD ( D thuộc AC). Trên Cạnh BC lấy điểm H sao cho BH = BA
a) Chứng minh BDA = BDH và DHBC
b) Tia HD cắt tia BA tại K. So sánh AK và HC
c) Gọi I là trung điểm của KC. Chứng minh ba điểm B, D, I thẳng hành
d) Chứng minh
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ, phân giác AD ( D thuộc BC). Kẻ đường cao BE cắt AD tại H
a) Chứng minh CH vuông góc với AB
b) Gọi F là giao điểm của CH và AB. Chứng minh AD là trung trực của đoạn EF
c)Kẻ EI vuông góc với HC tại I; FJ vuông góc với HB tại J. Chứng minh các đường thẳng EI, FJ và AD cùng đi qua một điểm O
d) Chứng minh AC - AF> OF - OC
Các bạn ơi giúp mình với nhé!
Cho tam giác ABC vuông cân tại A , trung tuyến AM và một diểm D trên cạnh BC ( D khác M ) . Hạ BH và CK vuông góc với đường thẳng AD ( H, K thuộc AD . Gọi giao điểm của BH và CK với AM lần lượt là E và F a) góc MAB =? b) ∆AHB = ∆ CKA c) ∆DEF vuông cân
Cho tam giác ABC vuông tại A, phân giác BF (F thuộc AC). Kẻ vuông góc với BF tại H.
Lấy E sao cho H là trung điểm của EF. Kẻ FK vuông góc với BC (K thuộc BC).
a) Chứng minh: CE = CF; BA = BK
b) AK // CH
c) CH, FK, AB đồng quy tại một điểm
Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
Cho tam giác ABC (Góc A=90 độ), phân giác góc B cắt AC tại D.
a) So sánh AB và BD
b) So sánh BC và BD
c) Kẻ DE vuông góc với BC tại E. Gọi F là giao điểm của BA và ED. Chứng minh BDlà đường trung trực AE
d) Chứng minh DF=DC
e) Chứng minh AD<DC
Cho tam giácABC vuông ở A, kẻ đường cao AH ( H thuộc BC). Từ H kẻ HD vuông với AB (D thuộc AB) và HE vuông với AC (E thuộc AC). Chứng minh DE=AH. Chứng minh góc ADE = góc ACB.