a: H đối xứng M qua AB
=>AH=AM; BH=BM
Xet ΔAHB và ΔAMB có
AH=AM
BH=BM
AB chung
=>ΔAHB=ΔAMB
=>góc AMB=90 độ
góc AHB+góc AMB=180 độ
=>AHBM nội tiếp đường tròn đường kính AB
b: Vì AC vuông góc AB tại A
nên AC là tiếp tuyến của đường tròn đường kính AB
c: H đối xứng N qua AC
=>AN=AH; CN=CH
mà AC chung
nên ΔAHC=ΔANC
=>góc HAC=góc NAC
góc MAN=góc MAH+góc NAH
=2(góc CAH+góc BAH)
=2*90=180 độ
=>M,A,N thẳng hàng
d: Gọi O là trung điểm của BC
BM vuông góc MN
CN vuông góc MN
=>BM//CN
Xét hình thang BMNC có
O,A lần lượt là trung điểm của BC,NM
=>OA là đường trung bình
=>OA//BM//CN
=>OA vuông góc MN
=>MN là tiếp tuyến của (O)