Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDA từ đó suy ra AM=\(\dfrac{BC}{2}\)
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=\(\dfrac{BC}{2}\)
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
Cho \(\Delta ABC\), M là trung điểm của BC. CMR:
\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
Cho ΔABC cân tại A. Qua A kẻ đường thẳng vuông góc vói BC, cắt BC tại H. Gọi M và N lần lượt là trung điểm của AC và AB
a) C.minh ΔAHB = ΔAHC
b) Tính độ dài AH bt AB = AC = 10cm, BC = 12cm
c) C.minh MN//BC
d) C.minh ΔGBC cân tại G
e) Gọi G là giao điểm của BM và CN. C.minh 3 điểm A, G, H thẳng hàng
_Vẽ hộ hình, cảm ơn
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
cho tam giác ABC cân tại A(AB>BC),đường trung trực của AC cắt BC tại M,trên tia đối AM lấy điểm N sao cho AN=BM.Kẻ CI vuông góc với MN tại I.Chứng minh rằng I là trung điểm MN. Giúp e nha mn(e đang cần gấp!!!)