Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC, AB < AC. Gọi M là trung điểm của BC. Trên tia đối tia MA lấy D sao cho MD = MA. Trên nửa mặt phẳng bờ AB không chứa C vẽ tam giác ABE vuông cân tại A. Trên nửa mặt phẳng bờ AC vẽ tam giác ACF vuông cân tại A. Chứng minh: a) Chứng minh: AD = EF
b) Vẽ AH vuông góc với BC tại H. EF cắt đường thẳng AH tại K. Chứng minh: KE = KF.
Cho ΔABC có 3 góc nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối HA lấy điểm D sao cho HA=HD
a) Chứng minh rằng BC là tia phân giác của goác ABD
b) Chứng minh CA=CD
Cho tam giác nhọn ABC. Về phía ngoài tam giác vẽ các tam giác vuông cân ABE và ACF ở B và C. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH, lấy điểm I sao cho AI = BC.Chứng minh :
a) Tam giác ABI bằng tam giác BEC
b) BI = CE và Bi vuông góc với CE
c)Ba đường thẳng AH , CE , BF cùng đi qua một điểm
Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE
Cho tam giác nhọn ABC,đường cao AH.Về phía ngoài tam giác vẽ các tam giác vuông cân ABE và ACF ở B và C.Trên tioa đối của tia AH lấy điểm I sao cho AI=BC.Chứng minh:
a)Tam giác ABI bằng tam giác BEC.
b)BI=CE và BI vuông góc với CE.
c)Ba đường thẳng AH,CE,BF cắt nhau tại một điểm.
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho \(\Delta ABC\) nhọn có AH là đường cao.Vẽ về phía ngoài tam giác các tam giác vuông cân ABE và ACF tại B và C.Trên tia đối của tia AH lấy I sao cho AI = BC.CMR:
a) \(\Delta ABI=\Delta BEC\)
b) BI = CE và \(BI\perp CE\)
c) AH,CE,BF đồng quy.
Cho tam giác nhọn ABC. Về phía ngoài tam giác vae các tam giác vuông cân ABE và ACF ở B và C. Vẽ AH vuông góc BC tại H, trên tia đối của tia AH, lấy điểm I sao cho AI=BC.CM
a,Tam giác ABI= Tam giác BEC
b,BI=CE và BI vuông góc với CE
c,Ba đường thẳng AH,CE,BF cùng đi qua 1 điểm
MÌNH CẦN GẤP GIÚP MÌNH NHA