a: DA=2DB
=>DA=2/3*7,5=5cm; DB=2,5cm
b: Xét ΔABK có DH//BK
nên DH/BK=AD/AB=2/3=AH/AK
c: AH/AK=2/3
=>AH=3cm
=>HK=1,5cm
a: DA=2DB
=>DA=2/3*7,5=5cm; DB=2,5cm
b: Xét ΔABK có DH//BK
nên DH/BK=AD/AB=2/3=AH/AK
c: AH/AK=2/3
=>AH=3cm
=>HK=1,5cm
Cho △ ABC có AB=7,5 cm.Trên AB lấy điểm D đến với \(\frac{DB}{DA}=\frac{1}{2}\)
a) Tính DA,DB
b)Gọi DH,BK lần lượt là khoảng cách từ D,B đến cạnh AC.Tính \(\frac{DH}{BK}\)
c)Cho biết AK=4,5 cm .Tính HK
Cho ΔABC. Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF=DB. Gọi M là giao điểm của DF và BC. Chứng minh \(\dfrac{DM}{MF}\)=\(\dfrac{AC}{AB}\)
Cho đoạn AB.C thuộc AB, D thuộc tia đối của tia BA sao cho \(\dfrac{CA}{CB}=\dfrac{DA}{DB}=2\). Biết CD=4cm, AB dài bao nhiêu cm
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
Cho ▲ ABC, đường trung tuyến AD. Gọi K là điểm ϵ AD sao cho \(\dfrac{AK}{KD}\)=\(\dfrac{1}{2}\). Gọi E là giao điểm của BK và AC. Tính tỉ số của \(\dfrac{AE}{EC}\)
giúp em giải bài này vs ạ em đag cần gấp em c.ơn trước ạ
Cho ∆𝐴𝐵𝐶 và điểm D thuộc BC sao cho \(\dfrac{BD}{DC}\) = \(\dfrac{1}{2}\). Từ D kẻ các đường thẳng // với AB, AC lần lượt tại F và E.
a, So sánh \(\dfrac{AF}{AB}\) và \(\dfrac{AE}{AC}\)
b, C/m EF // trung tuyến BI của \(\Delta\)ABC
Bài 1:Cho tam giác ABC có M,I lần lượt là trung điểm của BC,AM. Gọi K là giao điểm của CI và AB. Tính \(\dfrac{AK}{AB}\)
Bài 2: Cho hình bình hành ABCD. Gọi M,N lần lượt là các điểm thuộc cạnh AB,AD sao cho \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AD}\)=k
a. Chứng minh rằng AC,BN,DM đồng quy
b. Gọi E,F lần lượt là giao điểm của MC và AD;NC và AB
Chứng minh rằng EF// MN. Tính \(\dfrac{EF}{MN}\)
cho tam giác abc,đường thẳng song song với bc cắt ab,ac ở d và e
cm:nếu da/db=ec/ea thì d,e lần lượt là trung điểm của ab và ac