a) Xét ΔADB và ΔCDI có
\(\widehat{ADB}=\widehat{CDI}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{ICD}\)(gt)
Do đó: ΔADB\(\sim\)ΔCDI(g-g)
b) Trên đoạn AD lấy điểm M sao cho \(\widehat{ABD}=\widehat{AMC}\)
Xét ΔABD và ΔAMC có
\(\widehat{ABD}=\widehat{AMC}\)(cmt)
\(\widehat{BAD}=\widehat{MAC}\)(gt)
Do đó: ΔABD∼ΔAMC(g-g)
Suy ra: \(\dfrac{AB}{AM}=\dfrac{AD}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot AC=AM\cdot AD\)
Xét ΔABD và ΔCMD có
\(\widehat{ADB}=\widehat{CDM}\)(hai góc đối đỉnh)
\(\widehat{ABD}=\widehat{CMD}\)(gt)
Do đó: ΔABD∼ΔCMD(g-g)
Suy ra: \(\dfrac{DA}{DC}=\dfrac{DB}{DM}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DB\cdot DC=DA\cdot DM\)
Ta có: \(AB\cdot AC-DB\cdot DC\)
\(=AM\cdot AD-AD\cdot DM\)
\(=AD\cdot\left(AM-DM\right)\)
\(=AD^2\)(đpcm)