Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Đan

Cho ΔABC ⊥ A, AB = 21cm, đường phân giác của góc A cắt BC tại D, đường thẳng qua D và song song với AB cắt AC tại E

a) Tính độ dài BD, DC, DE.

b) Tính diện tích tam giác ABD và tam giác ACD.

Nguyễn Lê Phước Thịnh
1 tháng 3 2021 lúc 22:39

Bổ sung đề: AC=28cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{21}=\dfrac{DC}{28}\)

mà DB+DC=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{21}=\dfrac{DC}{28}=\dfrac{DB+DC}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có 

D∈BC(gt)

E∈AC(gt)

DE//AB(gt)

Do đó: \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)(Hệ quả Định lí Ta lét)

\(\Leftrightarrow\dfrac{DE}{21}=\dfrac{20}{35}\)

hay \(DE=\dfrac{21\cdot20}{35}=\dfrac{420}{35}=12\left(cm\right)\)

Vậy: CD=15cm; BD=20cm; DE=12cm


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Ngọc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
tút tút
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguoi Viet Nam
Xem chi tiết
Thảo Vân
Xem chi tiết
Co Nguyen
Xem chi tiết