Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Tam giác ABC có AB = 15cm, AC = 20 cm, BC = 25 cm. Đường phân giác góc BAC cắt cạnh ABC tại D (h.14)

a) Tính độ dài các đoạn thẳng DB và DC

b) Tính tỉ số diện tích của hai tam giác ABD và ACD

Nguyen Thuy Hoa
5 tháng 7 2017 lúc 7:27

Tính chất đường phân giác của tam giác

Dũng Nguyễn
13 tháng 3 2020 lúc 10:48

Trong ΔABC, ta có: AD là đường phân giác của (BAC)

Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)

Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)

\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)

b. Kẻ AH ⊥ BC

Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC

Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
tút tút
Xem chi tiết
Linh Đan
Xem chi tiết
Ngọc
Xem chi tiết
anh
Xem chi tiết
Thảo Vân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết