Xét đa thức P(x) có bậc 2017 thỏa mãn \(P\left(1\right)=P\left(2017\right),P\left(2\right)=P\left(2016\right),...,P\left(2017\right)=P\left(1\right)\) và \(P\left(0\right)=1\)
Tính giá trị của \(P\left(2018\right)\)
Cảm ơn mọi người!
ta có
\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)-\left(x-2019\right)^2}=\frac{19}{49}\) ( điều kiện : x khác : 2018;2019 )
đặt a = x - 2019 ( a khác 0 )
ta có hệ thức :
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\\ \Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\\ \left(2a+1\right)^2-4^2=0\\ \Leftrightarrow\left(2a+3\right)\left(2a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4041}{2}\\x=\frac{4033}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
vậy \(x\in\left\{\frac{4041}{2};\frac{4033}{2}\right\}\)
Cho các số x,y thỏa mãn đẳng thức:
\(^{2x^2}\)+\(^{2y^2}\)+3xy-x+y+1=0
Tính giá trị của biểu thức:
B=\(^{\left(x+y\right)^{2018}}\)+\(\left(x-2\right)^{2018}\)+\(\left(y-1\right)^{2018}\)
Cho đa thức P(x) = \(x^3+ax^2+cx+d\) thỏa mãn P(m) = n+k, P(n) = k+m, P(k) = m+n, trong đó m, n, k là các số thực phân biệt. Chứng minh rằng P(m + n + k) = (m + n)(n + k)(k + m).
Cảm ơn mọi người nhiều!
P/s: Mọi người giúp em với em sắp phải nộp rồi :((((
Với a , b, c đôi một khác nhau . Chứng minh :
P = \(\frac{1}{\left(a-b\right)\left(a-c\right)}\) + \(\frac{1}{\left(b-c\right)\left(b-a\right)}\) + \(\frac{1}{\left(c-a\right)\left(c-b\right)}\) = 0
Mọi người ơi , giúp mình với !!!!!!!!!!
Mai mình thi học kì II rùi !!!!!! Mình cần gấp lắm !!!!
Cảm ơn nhiều ạ !!!
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Giải phương trình:
a) \(\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}=1\)
b)\(\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}=\frac{5}{3}\)
Cho các số dương x;y;z thỏa mãn:\(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức :\(S=\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Bài 1: Cho các số x,y thõa mãn điều kiện : 2x2 + 10y2 - 6xy -2y +10 = 0
Hãy tính giá trị của biểu thức : A = \(\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{x}\)
Mình cảm ơn mọi người trước nha !!