bài 1 : Tìm GTNN(min) : A = \(\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}x\)
bài 2 : Cho P(x) = ax3 + bx2 + cx + d với a,b,c,d \(\in\) Z
Biết P(0) và P(1) là số lẻ
Chứng minh rằng : P(x) không thể có nghiệm là số nguyên
Cho đa thức P(x) = ax3 + bx2 + cx + d có các hệ số a, b, c, d nguyên.
Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5.Chứng minh a,b,c,d đều chia hết cho 5
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5. Chứng minh a,b,c,d đều chia hết cho 5
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(x) ⋮ 7 với mọi giá trị x nguyên. Chứng minh rằng các hệ số của đa thức trên đều chia hết cho 7
Cho đa thức P(x) = \(a\cdot x^3+b\cdot x^2+c\cdot x+d\) . Trong đó, các hệ số a, b, c, d là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c, d đều chia hết cho 5.
Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ.
Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.
@ Mashiro Shiina help :v
1.Tìm số tự nhiên n để phân số\(\dfrac {7n-8}{2n-3}\) đạt giá trị lớn nhất
2.Cho đa thức p(x) = \(ax^{3}+bx^{2}+cx+d \) với a,b,c,d là các hệ số nguyên. Biết rằng, p(x) chia hết cho 5 với mọi x nguyên . Chứng minh rằng a,b,c,d đều chia hết cho 5
3.Gọi a,b,c là độ dài các cạnh của một tam giác. chứng minh rằng:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} <2\)
1) Tìm số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\)có giá trị lớn nhất
2) Cho đa thức p ( x) = a3+bx + cx + d với a, b, c, d là các hệ số nguyên . Biết rằng p( x ) \(⋮\)5 với mọi x nguyên
Chứng minh rằng : a, b, c , d đều chia hết cho 5
3) Gọi a, b, c là độ dài các cạnh cảu 1 tam giác . Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)