\(f\left(x\right)=\frac{x^5-5x^3+4x}{30}=\frac{x\left(x^4-5x^2+4\right)}{30}=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)
\(f\left(x\right)=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}=\frac{a}{30}\)
Với x nguyên, do \(a=\left(x-2\right)\left(x-2\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nhiên liên tiếp nên \(a⋮120\Rightarrow a⋮30\Rightarrow f\left(x\right)\) nguyên
Cũng do \(a⋮120\Rightarrow a=120k\Rightarrow f\left(x\right)=\frac{120k}{30}=4k⋮4\)
Mà \(67⋮̸4\Rightarrow f\left(x\right)\ne67\) \(\forall x\) nguyên