Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Phương

Cho Δ ABC vuông tại A, AB = 6cm, AC = 8cm
a) Giải Δ ABC
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE ⊥ AB, DF ⊥ AC. Tứ giác AEDF là hình gì, tính chu vi và diện tích của nó.

Nguyễn Ngọc Lộc
22 tháng 3 2020 lúc 13:37

A C B D E F

a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :

\(AB^2+AC^2=BC^2\)

=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

- Áp dụng tỉ số lượng giác vào tam giác ABC vuông tại A có :

\(SinB=\frac{AC}{BC}=\frac{8}{10}\)

=> \(\widehat{ABC}\approx53^o\)

\(SinC=\frac{AB}{BC}=\frac{6}{8}\)

=> \(\widehat{ACB}\approx37^o\)

b, - Ta có AD là phân giác của góc A .

=> \(\frac{AC}{CD}=\frac{AB}{BD}\) ( tính chất đường phân giác )

- Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{AC}{CD}=\frac{AB}{BD}=\frac{8}{CD}=\frac{6}{BD}=\frac{8+6}{CD+BD}=\frac{14}{BC}=\frac{14}{10}=\frac{7}{5}\)

=> \(\left\{{}\begin{matrix}\frac{8}{CD}=\frac{7}{5}\\\frac{6}{BD}=\frac{7}{5}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}CD=\frac{40}{7}\left(cm\right)\\BD=\frac{30}{7}\left(cm\right)\end{matrix}\right.\)

c, - Xét tứ giác AEDF có : \(\widehat{FAE}=\widehat{DEA}=\widehat{DFA}=90^o\)

=> Tứ giác AEDF là hình chữ nhật .

- Áp dụng tỉ số lượng giác vào tam giác DEB vuông tại E có :

\(SinB=\frac{DE}{DB}=\frac{DE}{\frac{30}{7}}=\frac{8}{10}\)

=> \(DE=\frac{24}{7}\left(cm\right)\)

- Áp dụng tỉ số lượng giác vào tam giác CFD vuông tại F có :

\(SinC=\frac{DF}{DC}=\frac{DF}{\frac{40}{7}}=\frac{6}{8}\)

=> \(DF=\frac{30}{7}\left(cm\right)\)

Vậy \(\left\{{}\begin{matrix}C_{AEDF}=2\left(DE+DF\right)=2\left(\frac{24}{7}+\frac{30}{7}\right)=\frac{108}{7}\left(CM\right)\\S_{AEDF}=DE.DF=\frac{24}{7}.\frac{30}{7}=\frac{720}{49}\left(cm^2\right)\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
Rosie
Xem chi tiết
Lê Hoàng Mỹ Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Hoàng Mỹ Nguyễn
Xem chi tiết
Vyyyyyyy
Xem chi tiết
kietdeptrai
Xem chi tiết