Cho \(\Delta ABC\), trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho \(AD=\dfrac{1}{4}AB\), \(AE=\dfrac{1}{2}AC.\) Đường thẳng DE và BC cắt nhau tại F. C/minh: \(CF=\dfrac{1}{2}BC\)
Bài 1: Cho △ABC có M là trung điểm của BC, I là trung điểm của AM. CI cắt AB tại D. Gọi E là trung điểm của BD. Chứng minh rằng:
a) ME=\(\dfrac{1}{2}\)CD
b) AD=\(\dfrac{1}{2}\)BD
c) ID=\(\dfrac{1}{4}\)CD
Bài 2: Cho △ABC cân tại A có I là trung điểm của BC. Lấy D∈AB. Trên tia DI lấy E sao cho I là trung điểm của DE. Chứng minh rằng:
a) BD=CE
b) CB là tia phân giác góc ACE
Bài 3: △ABC vuông tại A. Trên nửa mặt phẳng bờ AC không chứa B kẻ Cx sao cho CA là tia phân giasc của góc BCx. Từ A kẻ AE\(\perp\)Cx. Từ B kẻ BD\(\perp\)AE. Gọi AH là đường cao của △ABC. Chứng minh rằng:
a) △AHC =△AEC
b) A là trung điểm của DE
c)△DHE là tam giác vuông
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{a+b}\). Chứng minh: Tam giác ABC cân
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+b}\). Chứng minh tam giác ABC cân
Cho \(\Delta ABC\), trên các cạnh AB,AC lần lượt lấy các điểm D và E sao cho \(AD=\dfrac{1}{4}AB\), \(AE=\dfrac{1}{2}AC\). Đường thẳng DE và BC cắt nhau tại F. CMR: \(CF=\dfrac{1}{2}BC\)
Cho tam giác ABC. D là một điểm trên cạnh BC, qua D kẻ các đường thẳng song song vs AB, AC chúng cắt AB,AC lần lượt tại E và F
chứng minh: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)
Cho tam giác ABC(AB \(\ne\) AC); AD là phân giác góc A(D \(\in\) BC).Vẽ BM vuông góc BD tại M, CN vuông góc BD tại N.
a, Chứng minh: tam giác AMB\(\sim\)tam giácANC
b, Lấy H\(\in\)AB, K\(\in\)AC sao cho BH=BD, CK=CD. Chứng minh HK//BC
c, Hai đường thẳng CM, NB cắt nhau tại E. Chứng minh rằng: \(\dfrac{1}{MB}=\dfrac{1}{NC}+\dfrac{1}{AE}\)
Cho \(\Delta ABC\) vuông tại \(A\), có \(AB=12cm\), \(AC=16cm\). Kẻ đường cao \(AH\left(H\in BC\right)\).
\(a\)) Chứng minh: \(\Delta HBA\sim\Delta ABC\)
\(b\)) Tính độ dài các đoạn thẳng \(BC\), \(AH\)
\(c\)) Trong \(\Delta ABC\) kẻ phân giác\(AD\left(D\in BC\right)\); trong \(\Delta ADB\) kẻ đường phân giác \(DE\left(E\in AB\right)\); trong \(\Delta ADC\) kẻ đường phân giác \(DF\left(F\in AC\right)\). Chứng minh rằng: \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)