Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Ngọc Trâm Anh

Bài 1: Cho △ABC có M là trung điểm của BC, I là trung điểm của AM. CI cắt AB tại D. Gọi E là trung điểm của BD. Chứng minh rằng:

a) ME=\(\dfrac{1}{2}\)CD

b) AD=\(\dfrac{1}{2}\)BD

c) ID=\(\dfrac{1}{4}\)CD

Bài 2: Cho △ABC cân tại A có I là trung điểm của BC. Lấy D∈AB. Trên tia DI lấy E sao cho I là trung điểm của DE. Chứng minh rằng:

a) BD=CE

b) CB là tia phân giác góc ACE

Bài 3: △ABC vuông tại A. Trên nửa mặt phẳng bờ AC không chứa B kẻ Cx sao cho CA là tia phân giasc của góc BCx. Từ A kẻ AE\(\perp\)Cx. Từ B kẻ BD\(\perp\)AE. Gọi AH là đường cao của △ABC. Chứng minh rằng:

a) △AHC =△AEC

b) A là trung điểm của DE

c)△DHE là tam giác vuông

Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 14:57

 

Bài 2:

a: Xét tứ giác BDCE có

I là trung điểm chung của BC và DE

Do đo: BDCE là hình bình hành

=>BD//CE và BD=CE
b: BD//CE
nên góc ECB=góc DBC

=>góc ECB=góc ACB

=>CB là phân giác của góc ACE


Các câu hỏi tương tự
dam quoc phú
Xem chi tiết
Big City Boy
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết
Big City Boy
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Võ Văn Hùng
Xem chi tiết