Cho tam giác ABC(AB \(\ne\) AC); AD là phân giác góc A(D \(\in\) BC).Vẽ BM vuông góc BD tại M, CN vuông góc BD tại N.
a, Chứng minh: tam giác AMB\(\sim\)tam giácANC
b, Lấy H\(\in\)AB, K\(\in\)AC sao cho BH=BD, CK=CD. Chứng minh HK//BC
c, Hai đường thẳng CM, NB cắt nhau tại E. Chứng minh rằng: \(\dfrac{1}{MB}=\dfrac{1}{NC}+\dfrac{1}{AE}\)
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc BAM=góc CAN
Do đó: ΔAMB đồng dạng với ΔANC
b: BH/CK=BD/CD
nên BH/CK=BA/CA
=>HK//BC