\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{DC}{BC}+\dfrac{BD}{BC}=1\)
\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{DC}{BC}+\dfrac{BD}{BC}=1\)
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Cho △ ABC . Trên cạnh BC lấy D sao cho \(\frac{DB}{DC}=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E , đường thẳng qua D song song với AC cắt AB tại F .
a) So sánh \(\frac{AF}{AB}và\frac{AE}{AC}\)
b) Gọi M là trung điểm của AC . Chứng minh EF // BM
Cho tam giác ABC, một đường thẳng song song BC cắt AB, AC lần lượt tại D và E. Trên tí đối tia CA lấy điểm F sao cho CF = BD, gọi M là giao điểm DF và BC. Chứng minh \(\dfrac{MD}{MF}=\dfrac{AC}{AB}\)
câu 1:cho tam giác abc, điểm d thuộc cạnh bc. qua d kẻ đường thẳng song song với ac, ab , chúng cắt ab , ac theo thứ tự ở e, f . cm
\(\frac{ae}{ab}\)+\(\frac{af}{ac}\)=1
câu 2 : Cho tam giác abc(ab<ac), đường phân giác ad. Qua trung điểm m của bc , kẻ đường thẳng song song với ad , cắt ac và ab theo thứ tự ở e và k .cm
a)ae=ak
b)bk=ce
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.
a, Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+NK+AD.
c, Tìm vị trí của điểm I để MN song song với BC.
cho tam giác ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm. Từ A kẻ tia phân giác của góc BAC cắt BC tại D. Từ D kẻ các đường thẳng song song với AB,AC và cắt AB,AC tại F,E.
a.AEDF là hình gì?Vì Sao?
b.Tính DB,DC(lm tròn đến chữ số thập phân 2 ).
c. CM \(\frac{AE}{AB}+\frac{AF}{AC}=1\)
d. Gọi C là giao điểm của AD và CE.Từ O kẻ đường thẳng song song với AC, cắt BC và AB lần lượt tại K,H. Cm OH=OK