tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
cho hàm số \(y=\dfrac{mx^2+\left(m+2\right)x+5}{x^2+1}\). gọi S là tập hợp các giá trị của m sao cho đồ thị hàm số đã cho có đúng hai điểm cực trị và đường thẳng nối hai điểm cực trị của đồ thị hàm số cắt hai trục tọa độ tạo thành một tam giác có diện tích = \(\dfrac{25}{4}\). tính tổng các phần tử của S
tìm các pt đường thẳng đi qua cực đại và cực tiểu của đồ thị hàm số y = -x3 + 3x2 -2
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
tìm m để đồ thị hàm số \(y=x^4-2mx^2+2m+m^4\) có 3 điểm cực trị là đỉnh của một tam giác có diện tích bằng 4
tìm m để đồ thị hàm số \(y=x^4+2\left(m-2\right)x^2+m^2-5m+5\) có 3 điểm cực trị là các đỉnh của một tam giác đều
tìm m để đồ thị hàm số \(y=mx^4-4x^2+1\) có 3 điểm cực trị là đỉnh của một tam giác vuông cân
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
tìm điểm M thuộc đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến trục hoành.