Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB=AD=2a. CD=a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a. SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, cạnh AC = a. Tính \(\alpha\) theo thể tích khối S.ABCD và khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB=a;BC=a\sqrt{3}\), H là trung điểm của cạnh AB. Biết 2 mặt phẳng (SHC) và (SHD) cùng vuông góc với mặt phẳng (ABCD), đường thẳng SD tạo với mặt đáy góc 60 độ. Tính thể tích khối chóp và khoảng cách giữa 2 đường thẳng AC và SB.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB=a,BC=2a\sqrt{a}\). Hình chiếu của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA=a,SB=a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC
Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa 2 đường thẳng SM và DN
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SD=\frac{3a}{2}\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp s.ABCD và khoảng cách từ A đến mặt phẳng (SBD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB, AD. H là giao điểm của N và DM. Biết SH vuông góc với mặt phẳng (ABCD) và \(SH=a\sqrt{3}\). Tính thể tích của khối chóp S.CDNM và khoảng cách giữa 2 đường thẳng DM và SC theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=BC=2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AM; Mặt phẳng qua SM và song song với B, cắt AC tại N. Biết góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 60 độ. Tính thể tích của khối chóp S.BCNM và khoảng cách giữa 2 đường thẳng AB và SN theo a.
Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.
1. Tính thể tích khối tứ diện MNBD.
2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).