Cho các số thực x;y thỏa mãn: x2 + y2 = 1
Tìm Min, Max của biểu thức: A = \(\sqrt{3}xy+y^2\)
Áp dụng BĐT Cô - Si ta có :
\(A=\sqrt{3}xy+y^2=\sqrt{3.x^2.y^2}\le\dfrac{3x^2+y^2}{2}+y^2=\dfrac{3x^2+3y^2}{2}=\dfrac{3}{2}\)
Ta có : \(2A+1=2\sqrt{3}xy+2y^2+x^2+y^2=\left(x+\sqrt{3y}\right)^2\ge0\Rightarrow A\ge-\dfrac{1}{2}\)
Bạn tự tìm dấu bằng nha