\(A=x^2+3xy+4y^2\)
\(=\dfrac{9}{16}x^2+3xy+4y^2+\dfrac{7}{16}x^2\)
\(=4\left(\dfrac{9}{64}x^2+\dfrac{3}{4}xy+y^2\right)+\dfrac{7}{16}x^2\)
\(=4\left(\dfrac{3}{8}x+y^2\right)+\dfrac{7}{16}x^2\ge4\cdot0+\dfrac{9}{17}\cdot1^2=\dfrac{7}{16}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{8}\end{matrix}\right.\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{8}\end{matrix}\right.\) khi \(A_{Min}=\dfrac{7}{16}\)