Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Winnerr NN

cho các số thực dương tm 2x+y>=7. Tìm gtnn \(S=x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{y}+9\)

Akai Haruma
24 tháng 5 2018 lúc 17:32

Lời giải:

Áp dụng BĐT Cô-si:

\(x^2+9\geq 2\sqrt{9x^2}=6x\)

\(\Rightarrow S\geq 6x-x+3y+\frac{9}{x}+\frac{1}{y}=5x+3y+\frac{9}{x}+\frac{1}{y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(x+\frac{9}{x}\geq 2\sqrt{9}=6\)

\(y+\frac{1}{y}\geq 2\sqrt{1}=2\)

\(4x+2y=2(2x+y)\geq 14\)

Cộng theo vế: \(\Rightarrow 5x+3y+\frac{9}{x}+\frac{1}{y}\geq 22(2)\)

Từ \((1);(2)\Rightarrow S\geq 22\Leftrightarrow S_{\min}=22\)

Dấu bằng xảy ra khi $x=3,y=1$


Các câu hỏi tương tự
Gay\
Xem chi tiết
Zenitisu
Xem chi tiết
camcon
Xem chi tiết
dia fic
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết