Lời giải:
Áp dụng BĐT Cô-si:
\(x^2+9\geq 2\sqrt{9x^2}=6x\)
\(\Rightarrow S\geq 6x-x+3y+\frac{9}{x}+\frac{1}{y}=5x+3y+\frac{9}{x}+\frac{1}{y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(x+\frac{9}{x}\geq 2\sqrt{9}=6\)
\(y+\frac{1}{y}\geq 2\sqrt{1}=2\)
\(4x+2y=2(2x+y)\geq 14\)
Cộng theo vế: \(\Rightarrow 5x+3y+\frac{9}{x}+\frac{1}{y}\geq 22(2)\)
Từ \((1);(2)\Rightarrow S\geq 22\Leftrightarrow S_{\min}=22\)
Dấu bằng xảy ra khi $x=3,y=1$