\(VT=\frac{\sqrt{ab}}{a+b}+\frac{\sqrt{bc}}{b+c}+\frac{\sqrt{ab}+\sqrt{bc}}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
Áp dụng BĐT Bunhiacopxki: \(\left(a+b\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{bc}\right)^2\)
\(\Rightarrow VT\le\frac{\sqrt{ab}}{2\sqrt{ab}}+\frac{\sqrt{bc}}{2\sqrt{bc}}+\frac{\sqrt{ab}+\sqrt{bc}}{\sqrt{ab}+\sqrt{bc}}=2\)
Dấu "=" xảy ra khi \(a=b\)